
Valuation of Mortgages by Using Lévy Models to 

Specify the State Variables for the Termination-Hazard 

and Recovery Rates 

 
 

Shu Ling Chiang 
Professor, 

Department of Business Management, National Kaohsiung Normal 

University, Kaohsiung, Taiwan. 

E-mail: g1352503@nccu.edu.tw.  

Tel:+886-7-717-2930 

ORCID：https://orcid.org/0000-0003-4153-508X 
No.116, Heping 1st Rd., Lingya District, Kaohsiung City 80201, 

Taiwan(R.O.C.) 

 
 

Ming Shann Tsai  
Corresponding author. Professor,  

Department of Finance, National University of Kaohsiung, Kaohsiung, 

Taiwan.  

E-mail: mstsai@nuk.edu.tw.  
Tel:+886-7-5919000 

700, Kaohsiung University Rd., Nanzih District, Kaohsiung 811, Taiwan, 

R.O.C. 

ORCID：https://orcid.org/0000-0003-3314-138X 
 



Valuation of Mortgages by Using Lévy Models to Specify the State 

Variables for the Termination-Hazard and Recovery Rates  

 

 

Abstract: 

In a mortgage valuation model, the early termination (i.e., prepayment and default) hazard 

rates and the recovery rate can be specified as multivariate affine functions that include the 

correlated stochastic state variables. For good capturing of the distributions for state variables, 

we specify that the state variables follow time-changed Lévy models. Accordingly, the early 

termination hazard rates and the recovery rate also follow time-changed Lévy processes. 

Three popular Lévy models, the normal, Variance Gamma (VG), and Negative Inverse 

Normal (NIG), were used to obtain the closed-form pricing formula for a mortgage and 

conduct numerical applications. Our empirical analyses reveal the following findings: VG 

model is better to fit the actual distributions of the interest rate and the change rate of the 

housing price than the normal and NIG models. Thus, mortgage valuation using a VG model 

should be better than that using the other two models. The mortgage value estimated by the 

normal model is the lowest among the three Lévy models, and the mortgage duration 

calculated by the normal model is also more variable than with the other two Lévy models. 

Our general pricing formula for a mortgage as described in this study can help market 

participants accurately value mortgages and effectively manage their risks. 

 

Keywords: Valuation, Mortgage, Prepayment Risk, Default Risk, Lévy Process 
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1. Introduction  
Outstanding U.S. bonds have grown from $1.93 trillion in 1980 to $42.68 trillion in 2018.1 

As shown in Figure 1, the market share of mortgage-related bonds has grown from 6% in 

1980 to the highest level of 32% in 2007. The market share of mortgage-related bonds in 

bonds market was the largest during 1999-2010. Although this share has decreased since 

2007, it was still the second largest segment of the U.S. fixed income markets from 2011 to 

2018. It is obvious that mortgage-related securities play an important role in financial 

markets. Thus, an accurate and effective model for valuating mortgages is essential for 

market practitioners and financial researchers because it can help them undertake hedging 

analyses and allocate assets by considering the risks associated with mortgages and 

mortgage-related securities. 

< Insert Figure 1 Here> 

Whether a mortgage can be accurately valued depends mainly on accurate estimates of 

the early termination (i.e., prepayment and default) hazard rates and the recovery rate given 

default. Several studies have employed Cox’s proportional hazard model, logistic regression, 

and Poisson regression to analyze the influential factors on the termination probabilities and 

the recovery rate (Cox and Oakes, 1984; Green and Shoven, 1986; Schwartz and Torous, 

1989, 1993; Cunninghan and Capone, 1990; Quigley and Van Order, 1990, 1995; Smith, 

Sanchez and Lawrence, 1996; Hurt and Felsovalyi, 1998; Frye, 2000a, b; 2003; Lambrecht, 

Perraudin and Satchell, 2003; Dermine and de Carvalho, 2006, Liao et al., 2008; Tsai et al., 

2009; Tsai and Chiang, 2012). Results from traditional researches indicate that the 

termination hazard rates (the recovery rate) are determined based on the basic hazard rates 

(the basic recovery rate) and some state variables, such as the interest rate and the change 

rate in the housing price (hereafter defined as the housing return rate). Accordingly, the 

                                                
1 Please refer to the SIFMA (Securities Industry and Financial Markets Association) Statistics website:             
http://www.sifma.org/research/statistics.aspx. 
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prepayment hazard rate, the default hazard rate and the recovery rate are usually specified as 

multivariate affine functions that include the correlated stochastic state variables (i.e., the 

interest rate and the housing return rate) (Duffee, 1999; Jarrow, 2001; Janosi et al., 2003; 

Capone, 2003; Liao et al., 2008). 

On the valuation of a mortgage, traditional studies usually used geometric Brownian 

motion (BM) to specify the processes of state variables (Kau, Keenan and Smurov, 2004; 

Liao, Tsai, Chiang, 2008; Tsai, Liao, Chiang, 2009). However, empirical studies have 

challenged the assumption of a geometric BM process on the state variables. A number of 

researchers have demonstrated that the housing price exhibits a “heavy-tailed” distribution 

(McCulloch, 1986; Young and Graff, 1995; Graff et al., 1997, 1999; Young, 2007). Several 

studies have also provided empirical evidence of the jump magnitude phenomenon that 

indeed exits for housing prices (McCulloch, 1986; Young and Graff, 1995; Graff et al., 1997, 

1999; Young, 2007). For interest rate, some authors have pointed out that the interest rate 

trajectories do not look like diffusion processes (Bjork, Kabanov and Runggaldier, 1997; 

Bjork, Masi, Kabanov and Runggaldier, 1997; Bjork and Christensen, 1999; Lekkos, 1999). 

Several studies provide empirical evidence that Lévy processes provide a better fit of bond 

returns or bond log-returns than those driven by BM (Raible, 2000; Hainaut and 

MacGilchrist, 2010). Accordingly, more and more researchers have incorporated the jump 

risks into their models to capture the effect of sudden changes in the house price when 

investigating issues regarding mortgages (Kau and Keenan, 1996; Chen et al., 2010; Chang et 

al., 2012; Tsai and Chiang, 2012; Calvo-Garrido et al., 2015). Also, interest rate models that 

admit jumps have been pursued in a number of studies, including Shirakawa (1991), Jarrow 

and Madan (1995), Bjork et al. (1997), Eberlien and Raible (1999), Raible (2000), Eberlein 

et al. (2005), Eberlein and Kluge (2006a,b, 2007), and Filipovic et al. (2010). In view of the 

above studies, although the assumption of geometric BM for state variables is analytically 

convenient, such assumptions no longer seem so realistic.  
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Recently, Lévy models have become increasingly popular in the discussion of the 

return process of financial assets. The empirical facts of excess kurtosis, skewness and fat 

tails can be modeled more realistically by a Lévy model (Heston 1993; Andersen and Lund, 

1997; Pan, 2002; Eraker et al., 2003). Results from empirical studies have demonstrated that 

a Lévy model is superior to a normal model for assessing the goodness-of-fit of return 

distributions (Madan and Seneta, 1987; Barndorff-Nielsen, 1995; Raible, 2000; Seneta, 2004; 

Daal and Madan, 2005; Hainaut and MacGilchrist, 2010; Figueroa-Lopez et al., 2011). In 

addition, more and more researchers have adopted a Lévy model to optimally capture the 

distributions of termination probabilities and recovery rate (Jonsson et al., 2009; Fan et al., 

2012; Maccaferri et al., 2013; Bo et al., 2014). Accordingly, this study describes a mortgage 

valuation model that includes the multivariate affine functions of termination hazard rates 

and the recovery rate with the correlated stochastic state variables following a time-changed 

Lévy process. To achieve this, the termination probabilities and the recovery rate can also be 

appropriately captured by a Lévy model, thus improving the accuracy of mortgage valuation. 

A pure-jump Lévy process can display either finite activity or infinite activity. 

Intuitively speaking, a finite-activity jump process exhibits a finite number of jumps within 

any finite time interval, and an infinite-activity jump process generates an infinite number of 

jumps within any finite time interval. As is well known, there are many other members of the 

Lévy family that offer greater flexibility in modeling the asset price dynamic, including BM 

and the compound Poisson process (i.e., the jump-diffusion model) that capture a 

finite-activity jump process. In traditional studies, the analyses of mortgages usually use a 

Lévy model with the finite-activity jump process, such as the jump-diffusion model (Chen et 

al., 2010; Chang et al., 2012; Tsai and Chiang, 2012).  

Previous studies have shown that a model with time changes, which allows for 

stochastically varying volatility, can capture the excess kurtosis and skewness of the 

underlying distribution (Heston 1993; Pan, 2002; Eraker et al., 2003). Moreover, an 
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infinite-activity jump process can generate an infinite number of small and large movements 

within any finite time interval. This process can be captured by the Normal Inverse Gaussian 

(NIG) model of Barndorff-Nielsen (1997b), the Generalized Hyperbolic Class of Eberlein et 

al. (1998), the Variance Gamma (VG) Model of Madan and Milne (1991) and Madan et al. 

(1998 C13), the Carr-Geman-Madan-Yor (CGMY) Model of Carr et al. (2002) and the Finite 

Moment Log-stable (LS) Model of Carr and Wu (2003). Results from empirical studies have 

demonstrated that the distributions of logarithmic asset returns can often be fit extremely 

well by the NIG and the VG models (Madan et al., 1988; Barndorff-Nielsen, 1995; Rydberg, 

1996, 1997a, 1999; Bu, 2007). These Lévy processes generally can be used to capture the 

time-changed appearance of return processes. 

In this study, we incorporate a time-changed Lévy model with the infinite-activity jump 

process, such as a VG or NIG model, into our valuation model. We used the VG and NIG 

models to capture the interest rate and the housing return rate. In valuation model, we 

specified the termination hazard rates and the recovery rate as multivariate affine functions 

that include the correlated stochastic state variables (i.e., the interest rate and the housing 

return rate). Accordingly, the prepayment and default hazard rates, as well as the recovery 

rate, also follow VG and NIG models. Such specification should capture as many of their 

important style features as possible. To the best of our knowledge, our pricing model is the 

first to provide a pricing formula for mortgage valuation that incorporates the termination 

hazard rates and recovery rate following a time-changed Lévy model with an infinite-activity 

jump process.  

We provide a numerical example for demonstrating how our valuation model can be 

used in practical applications. The maximum empirical likelihood method is used to estimate 

the parameters of the Lévy model (Qin and Lawless, 1994; Elgin, 2011). We then use these 

estimates and our pricing formula to price the mortgage. In previous studies, BM process 

usually has emerged as the benchmark process for describing asset return. Thus, to facilitate 
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understanding of how accurately the different Lévy models price mortgages, we compare the 

results of letting the interest rate and the housing return rate be determined by the normal 

(BM), VG and NIG processes. Also, we provide the analyses of duration attributable to 

changes in the interest rate for these three Lévy models.  

The remainder of this paper is structured as follows. Section 2 presents the general 

mortgage valuation framework. It describes the components of the mortgage contract and the 

definition of mortgage cash flow when the mortgage is active or terminated. It also explains 

the specification of the termination hazard rates and the recovery rate, and it illustrates the 

derivation of our mortgage valuation model. The specific implementation based on the three 

Lévy models (i.e., normal, VG and NIG) is discussed in Section 3. In Section 4, we examine 

which models best fit the actual underlying distributions of the housing return rate and 

interest rate. Moreover, this section describes the empirical methods for estimating the 

necessary parameters from historical data and presents the analyses of how the necessary 

parameters influence the mortgage value and duration. Also, we compare the pricing results 

for different termination rate and recovery rate specifications using these three Lévy models. 

The final section summarizes our findings. 

2. The General Mortgage Valuation Model 

This section presents a general mortgage valuation framework. Subsection 2.1 describes the 

components of the mortgage contract and the definition of mortgage payments, regardless of 

whether the mortgage is active, prepaid or in default. In Subsection 2.2, we specify the state 

variables, the termination hazard rates and recovery rates, and then we explain the derivation 

of the mortgage valuation formula.  

2.1 The basic framework of mortgage valuation using a reduced-form model 

In general, valuation models for a mortgage are constructed using either of two kinds of 
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models: a structural-form model or a reduced-form model. The former type, pioneered by 

Dunn and McConnell (1981a,b), usually uses an American-style options model to value 

mortgages and examines the early termination risk (Kau, Keenan, Muller III and Epperson, 

1993; Yang, Buist and Megbolugbe, 1998; Ambrose and Buttimer, 2000; Azevedo-Pereira, 

Newton and Paxson, 2003; Kau, Keenan and Smurov, 2004; Liao, Tsai, Chiang, 2008; Tsai, 

Liao, Chiang, 2009). The latter model assumes that the early termination events follow a 

Poisson distribution. The reduced-form model is extremely flexible because it can easily 

accommodate whatever explanatory variables are offered and whatever pattern of termination 

the data suggest. This model also offers an empirical valuation of mortgages that is more 

easily implemented than the structural-form model. Because of these reasons, we chose the 

reduced-form model to value a mortgage. 

We evaluate a fully amortized fixed-rate mortgage (FRM), which has initial principal 

balance , fixed coupon rate  and a time to maturity of  years based on a 

continuous-time framework. The definitions of mortgage cash flow are expressed in the 

following. If a default or prepayment event does not occur, the continuous payout  and the 

mortgage balance  at time  can be obtained as follows: 

, and .                     (1) 

For the descriptions of the mortgage borrower’s termination behavior, we adopt the 

model shown in Tsai and Chiang (2012). With this valuation model, if the prepayment occurs 

at a random time  within the range  to , the cash payment obtained by the lender is 

. If the default occurs at a random time  within the range  to , the cash 

payment received by the lender is , where  is the recovery rate at , 

with . We let  and  be the hazard rates of a loan being prepaid and 

defaulted respectively at time . Under no arbitrage and a complete market, the mortgage 

value at time , denoted as , can be expressed as follows (see Bielecki and Rutkowski, 
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2002; Liao et al., 2008; Tsai and Chiang, 2012):  

  

,                        (2)  

where  is an expected operator at time  under a risk-neutral measure. The first part of 

the right side of Equation (2) specifies the expected value of a mortgage that does not 

terminate until maturity (hereafter denoted as the survival value). The second and the third 

parts respectively represent the expected values of a mortgage that has been prepaid and 

defaulted before maturity (hereafter denoted as prepayment value and default value, 

respectively). 

2.2 Deriving a closed-form formula for a mortgage value using a Lévy model 

Results from previous researches indicate that the termination probabilities and the recovery 

rate are significantly dependent on the state variables such as the interest rate and the housing 

return rate (Green and Shoven, 1986; Schwartz and Torous, 1989, 1993; Smith et al., 1996; 

Lambrecht et al., 2003; Dermine and de Carvalho, 2006). Because several studies (e.g., 

Sutton, 2002; Borio and Mcguire, 2004, and Tsatsaronis and Zhu, 2004) indicate that there is 

a significant correlation between the interest rate and the housing return rate, their correlation 

is also incorporated in our mortgage valuation model. We therefore specify the prepayment 

and default hazard rates as well as the recovery rate to be affine functions of the correlated 

state variables, including the interest rate and the housing return rate. They are: 
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,                                    (5)  

where 

 is the default-free short-term interest rate; 

 is the housing return rate; 

 is the baseline hazard rate of prepayment, the baseline hazard rate of 

default and the baseline recovery rate (given  respectively) at time ; and 

 and  denote the coefficients of the interest rate and the housing return 

rate, respectively. 

We then show how to specify the interest rate and the housing return rate as 

time-changed Lévy processes. Here we let  and  be specified to follow Lévy 

processes of the Ornstein-Uhlenbeck (OU) type. In such specifications, the interest rate and 

the housing return rate are composed of two parts: one part is the drift term specified in the 

OU process, and the other part is the Lévy portion. They can be represented by the following 

differential equations (Barndorff-Nielsen and Shephard, 2001): 

, and                           (6)  

,                   (7)  

where  and  are the adjusted speeds of the interest rate and the housing return rate, 

respectively;  and  are the long-term interest rate and the long-term 

housing return rate.  and  are assumed to be Lévy processes under a 

risk-neutral measure. We assume that they satisfy the three conditions of a Lévy process.2 In 

                                                
2 According to the definitions in Schoutens (2003), an adapted process  is a Lévy process 
if the following three conditions are satisfied: (1)  has increments independent of the past; (2)  has 
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addition,  and  are assumed to be independent. The correlation between the 

processes of the interest rate and the housing return rate is denoted as the variable , 

where ,  and  are the symbols for covariance and 

variance, respectively. 

Since we use a Lévy model with an infinite-activity jump process,  (  and 

) is assumed to be a type of subordinator.3 Thus, according to Equation (6), we have the 

following: 

, and                              (8) 

,                              (9) 

where 

; 

 is the cumulated interest rate and ; 

; 

; and 

. 

Moreover, the cumulant of the cumulated interest rates  is expressed as follows: 
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,              (10) 

where  is the cumulant of .  

Likewise, according to Equation (7), we have the following:   

, and             (11) 

,             (12) 

where  

; 

 is the cumulated housing return rate and ; 

; 

; and 

. 

In addition, the cumulant of cumulated housing return rate  can be expressed 

as follows: 

    

,              (13) 

where  is the cumulant of . 

According to Equations (3), (4), (5), (9) and (12), we have: 

,                          (14) 
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mortgage in Equation (2) can be easily determined from the moment-generating functions 

(MGF), the cumulants for the processes of interest rate and the housing return rate. The MGF 

of  (denoted as ) is the expected survival probability of the 

mortgage. It can be expressed as follows (see Appendix A):  

   

 

 

,                             (15) 

where 

; 

; 

; and 

. 

The formula of  (denoted as ) is the 

prepayment probability of the mortgage. It can be shown in the following (see Appendix A): 
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, for .  

The formula of  (denoted as ) is the 

expected value of the recovery rate given default. We have (see Appendix A): 

,                      (17) 

where 
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 for . 

Substituting Equations (15)-(17) into Equation (2), we obtain the pricing formula for 

the mortgage value. It is:  
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that include the correlated stochastic state variables (i.e., interest rate and the housing return 

rate) following a time-changed Lévy process. Based on our pricing formula, one can use 

different types of Lévy model to value a mortgage. The following section introduces three 

types of Lévy model for this application. 

3. Our Model’s Application for the Different Types of Lévy Model 

The pricing formula for each Lévy models can be obtained if its cumulant ( , for 

) and derivatives of the cumulantare obtained. In the following subsections, we 

express the MGFs, the cumulants and their derivatives of the cumulant for the normal, VG 

and NIG models. For simplify, we ignore the subscript of  and denote  in 

normal model, VG model and NIG model as ,  and 

, respectively. 

3.1 Normal model 

To derive the mortgage valuation, traditional studies have specified the processes of interest 

rates and housing return rate by BM (Kau, Keenan and Smurov, 2004; Liao, Tsai, Chiang, 

2008). Here we first illustrate the specification of the BM process. BM with drift is a Lévy 

process that has gaussian increments. We denote  as a normal process. The 

probability density function (PDF) for  is defined as follows: 

,                                  (19) 

where  is the standard deviation of the normal distribution. The MGF (denoted as 

) and the cumulant for the normal process are given respectively by 
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.                                           (21) 

The first-order derivative and the second-order derivative of the cumulant can be expressed 

respectively as follows: 

, and                                     (22) 

.                                         (23) 

From these results we get ,  and  for the interest rate 

and ,  and  for the housing return rate. Then, 

applying these results in Equation (18) we obtain the explicit formula for mortgage valuation 

under the assumption of a normal model of the state variables. 

3.2 VG model 

The VG model was developed by Madan and Seneta (1990) and extended to incorporate 

skewness by Madan and Milne (1991) and Madan et al. (1998). Several studies document 

that the VG model performs better than other Lévy models for financial data series (Madan et 

al., 1998; Daal and Madan, 2005). The VG model is interpreted as BM with drift, where time 

is changed by a gamma process. It is one of the most popular infinite-activity models with 

finite variation but relatively low activity of small jumps. This process is a pure jump process 

with an infinite arrival rate of jumps, but unlike BM (that also has infinite motion) the 

process has finite variation and can be written as the difference of two increasing processes, 

each giving separately the market up and down moves. 

The PDF for a gamma distribution is defined as follows: 

,                              (24) 

where  is a gamma function, and  and  are the parameters of the gamma 

distribution.  
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The VG process is obtained by evaluating arithmetic BM with drift  and volatility 

 at random times given by a gamma process having a mean rate per unit time of 1 and a 

variance rate of  (Carr and Madan, 1998). The VG process (denoted as ) with 

parameters  is defined as follows: 

,                                     (25) 

where  is a gamma process with parameters  and . The VG 

process has three parameters: (1)  is the volatility of the BM, (2)  is the variance of 

the gamma time change and (3)  is the drift in the process.  

The MGF4 (denoted as ) and the cumulant for the VG model are 

given respectively by 

; and                 (26) 

.                     (27) 

The first-order and second-order derivatives for the cumulant can be expressed respectively 

as follows: 

 

; and           (28) 

 

  

.                 (29) 

                                                
4 The MGFs for the VG and NIG processes are obtained from their characteristic functions. 
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Using the formulas shown in Equations (27)–(29), we get , 

, and  for ; and then one can use these to 

obtain the explicit valuation formula for the mortgage based on Equation (18) under the 

assumption that the state variables follow a VG process. 

3.3 NIG model 

The NIG model was developed and has been discussed by Eberlein and Keller (1995), 

Barnriorff-Nielsen (1995, 1997a,b, 1998) and Rydberg (1997b), amongst others. 

Barndorff-Nielsen (1995), Rydberg (1997b), Seneta (2004), Daal and Madan (2005) and 

Figueroa-Lopez et al. (2011) demonstrate that the NIG model is superior to the normal model 

for the goodness-of-fit of return distributions. It is one of the most popular infinite-activity 

models with infinite variation in any finite interval of time, and it belongs to the class of 

generalized hyperbolic Lévy processes (Schoutens, 2003; Cont and Tankov, 2004). This 

process captures the asymmetry and leptokurtic nature of the underlying rate distribution. It 

is defined as an inverse Gaussian (IG) time-changed BM with drift. The IG process is usually 

used to describe a random first time at which BM reaches a positive level. The PDF for the 

IG is defined as follows: 

,                             (30) 

where  and  are the parameters of the IG distribution. 

We denote the NIG distribution as . The NIG process can be 

expressed as 

,                                (31) 

where  is an IG process with parameters  and . The MGF 
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(denoted as ) and the cumulant for the NIG model are given 

respectively (Barndorff-Nielsen, 1998): 

; and    (32) 

.         (33) 

The first-order and the second-order derivatives of the cumulant can be expressed as follows: 

; and             (34) 

 

.         (35) 

Applying the above results one can obtain ,  and 

, for ; and then through Equation (18) the explicit valuation 

formula for a mortgage under the assumption of the NIG model for the state variables can be 

obtained. 

4. Estimation Method 

Here a two-step method is adopted for the estimation. We first use the OLS method to 

estimate the drift terms for the two processes of the interest rate and the housing return rate. 

The second step is to use the empirical likelihood method to estimate the essential parameters 

when the two state variables are specified as one of the three Lévy models.  

To begin, we explain how to estimate the drift terms of the two processes. We let . 

According to Equations (6) and (7), we have the following respectively: 
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For simplification, we let  and  be the functions of the time, which are 

respectively  and . We then obtain the following 

regressions: 

, and                             (38) 

.                             (39) 

The OLS method is used to estimate the parameter values (i.e., , , , ,  and 

) of the above two regressions.  

Next, we illustrate how to estimate the parameters of the Lévy process. To estimate the 

parameters for the Lévy process of the interest rate, we let , for which  

represents the sample data for . To estimate the parameters for the Lévy process of the 

housing return rate, we let , where  represents the sample 

data for , and . The data of  and  are used 

to estimate the parameters for the Lévy models, shown in Section 3, adopting the maximum 

empirical likelihood method (Qin and Lawless, 1994; Elgin, 2011), an introduction to which 

is provided in Appendix B. 

5. Implementations of the Valuation Model  

In this section, we use real mortgage data to show how one can apply our model to obtain the 

mortgage value and its duration. In the first subsection, we provide a data description for 

each variable used in our model. The second subsection provides discussion of how the 

assumptions of the termination rate influence the mortgage value and its duration, which is 

due to the changes in the interest rate in these three Lévy models.  
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5.1 Data description 

We use the data obtained from Tsai and Chiang (2012) to implement the model. In this data, 

the monthly prepayment probability, default probability and recovery rate were taken from 

the CoreLogic LoanPerformance Securities Database. 5  The data includes first-lien 

mortgages issued from 2001 to 2008 at a 30-year fixed rate. The housing prices were the 

Standard and Poor’s Case-Shiller 10-City Home Price Index. For the short-term interest rates, 

we adopted the interest rates for a 3-month U.S. treasury bill. The sample period from 

September 2001 to October 2010 yielded 110 observations for each variable. Table 1 

presents descriptive information on the sample data: the mean, standard deviation, median, 

and maximum and minimum values of each short-term interest rate, housing price index, 

prepayment probability, default probability and recovery rate. The results show that the mean 

prepayment probability is 8.7 times the mean of the default probability (0.2146/0.0248), and 

thus one can show that the mortgage termination was caused mainly by the prepayment risk.  

< Insert Table 1 Here> 

5.2 Empirical results 

Because we used the data from Tsai and Chiang (2012), we refer to their results for the 

coefficients of the affine functions, the prepayment and default hazard rates and the recovery 

rate. The coefficients of the three affine functions (i.e., Equations (3)–(5)) are =0.3812, 

= -4.6498, = 0.7846, = 0.0424, = -0.8846, = -0.0846, = 0.4017, = 

3.7656 and = 1.3112.  

We use the OLS method to estimate the parameters of the OU process of the short-term 

interest rate and housing price processes. The estimates are shown in Table 2. According to 

                                                
5 The recovery rate was derived by annualizing the monthly mortality data from the CoreLogic Company. 

qj0

qjr
qjH

pj0
pjr

pjH
rj0

rjr

rjH



 20 

the empirical results from Equations (38) and (39), the estimated parameters for the interest 

rate are = 2.9259 , = -1.8492  and = -8.8384 ; none is significant 

at the 10% level. The estimates for the housing return rate are = 1.5243 , = 

-5.1887  and = 0.34354; all are significant at the 10% level. For both processes, all 

the time trends are negative. Thus, the time trends are downward for the long-term interest 

rate and the long-term housing return rate. The correlation between the interest rate and the 

housing return rate is calculated using Equations (6) and (7), from which we obtain = 

0.0343. 

< Insert Table 2 Here > 

The residuals of the regressions (i.e., Equations (38) and (39)) are used to estimate the 

parameters of the three Lévy models for the interest rate and the housing return rate 

respectively. We use the empirical likelihood method to estimate the parameters in the Lévy 

models. To perform the estimation, we need the initial values for each parameter in the Lévy 

models. We use the moment method to obtain these initial values. In Appendix C, we show 

the moment functions for the three Lévy models (i.e., normal, VG and NIG). We also show 

the estimates for the parameters of the short-term interest rate and housing price processes for 

each Lévy model using these moment functions. 

After obtaining the initial values of the parameters, we use the maximum empirical 

likelihood method to estimate the parameters of the short-term interest rate and housing price 

processes in each Lévy model. The results are shown in Table 3. For the normal model, the 

estimates are = 0.0053 for the interest rate and = 0.0071 for the housing return rate. 

For the VG model, the estimates are = 0.0054, = 257.3063 and = 1.8292  
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for the interest rate; and = 0.0074, = 278.5796 and = 3.1496  for the 

housing return rate. For the NIG model, the estimates are = 6.3216 , 

=37.2515 and =-0.8033 for the interest rate; and = 9.5083 , = 

0.9469 and = -0.0532 for the housing return rate. Most of these estimates are significant 

at the 1% level. 

To determine which model best fits the actual underlying distributions, we refer to the 

maximum empirical log-likelihood ratios ( ). For the interest rate, the values of  

are 5.8391 , 8.1119  and 7.6876  for the normal, VG and NIG models 

respectively. For the housing return rate, the values of  are 7.8589 , 

7.8628 and 5.8972  for the normal, VG and NIG models respectively. The VG 

model has the largest maximum empirical log-likelihood ratios no matter whether the 

estimates are for the interest rate or the housing return rate. Thus, the VG model is better than 

the other two models for capturing the residual paths of the interest rate and the housing 

return rate. Thus, mortgage valuation using the VG model should be better than that using the 

normal and NIG models. Accordingly, one can infer that the drifts of the residuals for the 

interest rate and the housing return rate are well interpreted as BM, where the time is 

changed by a gamma process. 

< Insert Table 3 Here> 

To calculate the mortgage values, we enter the parameter values into the mortgage 

valuation model as follows: the basic parameter values ( , , 

, and ), the estimates of the parameters for the drift terms of the OU 

processes for the interest rate and the housing return rate (see Table 2) and the estimates of 

the Lévy model parameters of the interest rate and the housing return rate (see Table 3). The 
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calculated mortgage values are shown in Table 4. The mortgage values are $101.2349, 

$103.3564 and $103.4505 for the Lévy process respectively specified as the normal, VG and 

NIG models. Our numerical results show that this valuation framework can be utilized in 

practical applications.  

< Insert Table 4 Here> 

The numerical results in Table 4 show that the mortgage value estimated by the normal 

model has the lowest value among the three Lévy models. Moreover, based on our model, 

one can extensively analyze the mortgage value to reveal its components, such as the survival 

value, the prepayment value and the default value. With the normal model, the survival value 

is $31.8618, the prepayment value is $67.7755 and the default value is $1.5976. With the VG 

model, the survival value is $30.4477, the prepayment value is $70.6049 and the default 

value is $2.3038. With the NIG model, the survival value is $30.7979, the prepayment value 

is $70.3599 and the default value is $2.2927. Accordingly, we find the prepayment value is 

the largest among three parts of the mortgage value, no matter which Lévy model is used. We 

can infer that the prepayment risk plays a key role in the valuation of a mortgage contract. 

Moreover, the termination (i.e., the prepayment and default) value in the normal model is 

lower than in the VG and NIG models. The main reason may come from that the normal 

model does not do a good job in capturing the real shapes of the termination hazard rates and 

the recovery rate given default. 

5.3 Discussion of the mortgage value and duration based on our model 

In traditional mortgage valuation, the termination rate (i.e., prepayment or default) is usually 

assumed to be a deterministic or constant value. For example, the PSA prepayment model,6 

                                                
6 The 100% PSA works as follows: the prepayment rate is 0.2% in the first month and then increases 0.2% each 
month until it reaches 6% in the thirtieth month. From the thirtieth month on, the prepayment rate is assumed to 
be 6%. 
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developed by the Public Securities Association, is commonly used for pricing 

mortgage-backed securities. This model let the prepayment rate be deterministic values. 

However, assuming a deterministic termination rate, which is not influenced by the related 

variables (e.g., interest rate), may cause unreasonable pricing results for mortgage-related 

securities. In Figures 2a and 2b, we respectively show the mortgage value and its duration 

corresponding to the different initial value of the interest rate when the termination hazard 

rate and recovery rate are not influenced by the state variables. To illustrate this, we let the 

coefficients for the affine functions of the interest rate and the housing return rate be zero. 

Specifically, = 0, = 0 and = 0, for . Moreover, we let  range from 

0.02 to 0.07. In Figure 2a, similar to analyses of a bond contract, there is a negative 

relationship between the mortgage value and interest rate. Moreover, Figure 2b shows that 

the duration of the mortgage is a positive value and is negatively correlated with the interest 

rate.  

< Insert Figure 2 Here> 

In Figures 3a and 3b, we use our model to respectively show the mortgage value and its 

duration corresponding to the different interest rates. In these figures, the solid line represents 

the estimated values under the normal model, the dotted represents the estimated values 

under the VG model and the dashed line represents the estimated values under the NIG 

model. Figure 3a tells us two interesting things. First, there is a positive relationship between 

the mortgage value and interest rate. This result may come from the fact that we let = 

-4.6498 on our numerical example. Thus, a decrease in the interest rate greatly increases the 

prepayment rate and then substantially decreases the survival value of the mortgage. As just 

mentioned, the prepayment risk plays a key role in the valuation of a mortgage contract. 

Therefore, the relationship between the mortgage value and the initial interest rate may no 

longer be negative, as shown in Figure 2. Our results reveal that specifying the termination 
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hazard rates, which are not influenced by the interest rate, could result in an unreasonable 

mortgage value. Since previous studies demonstrate that the prepayment rate is greatly 

influenced by the interest rate (Schwartz and Torous, 1993; Tsai and Chiang, 2012), one 

should consider the fact that the termination hazard rate is influenced by the state variables in 

valuing a mortgage contract. 

< Insert Figures 3a and 3b Here> 

Second, Figure 3a shows that the mortgage value estimated by the Lévy model with the 

normal process has the lowest estimated value among the three Lévy models. The same 

results can also be found in Table 4. As we justly mentioned, the main reason likely is that 

the normal model ignores the excess kurtosis, skewness, fat tails and jump effects in the real 

processes of the interest rate and the housing return rate. Thus, if one ignores the above facts 

on the actual processes of the state variables, the mortgage value could be underestimated. 

Moreover, our preceding results show that the VG model captures the processes of the 

interest rate and the housing return rate better than the NIG model. Thus, the pricing results 

should be better with the VG model than with either the normal or NIG models. 

Figure 3b shows the mortgage durations corresponding to the different interest rates. 

The results show that the duration is also negatively correlated with the interest rate (see Tsai, 

Liao and Chiang, 2009). However, this result is different than the results in Figure 2b, 

showing that there is a negative duration for the mortgage contract. Our results are similar to 

the reports that maintain that a negative duration appears typically in severely default-risky 

fixed income securities (see Leland and Toft, 1996; Nakamura, 2001). Thus, assuming that 

the prepayment rate is a deterministic value and ignoring the effects of the interest rate on the 

prepayment rate will cause an incorrect inference about the mortgage duration. Using such an 

unreasonable inference to manage the interest rate risk of a mortgage could result in a large 

loss if the interest rate is greatly changed.  
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Figure 3b also shows that the mortgage durations differ greatly from one another in the 

three Lévy models. As shown in the figure, if the interest rate increases from 2% to 7%, the 

duration changes from -2.8773 to -18.2080 with the normal model. However, with the VG 

model, the duration changes only from -3.3760 to -8.5687. For the NIG model, the range of 

duration is from -3.4070 to -9.2097. Thus, the variance of the durations estimated by the 

normal model is larger than that with both the VG and NIG models. In other words, the 

normal model may overestimate the influence of the interest rate risk on the mortgage value, 

because duration in this model has higher variance than with the other two models. This 

could cause one to adopt an unsuitable hedging strategy. In contrast, from the viewpoint of 

risk management, the VG model is better for the valuation because the variance of the 

duration is the smallest among the three models. Accordingly, we conclude that the VG 

model is better for the valuation of a mortgage contract than the normal and NIG models, no 

matter whether the concern is on the fit of the state variables or on the management of the 

interest rate risk. 

6. Conclusion 

Lévy models have become increasingly popular and more apparent in the asset pricing 

literature. In this study, our main purpose was to use a Lévy model to develop a general 

mortgage pricing framework. Our model provides the following contributions. First, we 

specify that the state variables (i.e., the interest rate and the housing return rate) follow 

OU-Lévy processes. The OU process has the characteristic of mean reversion and its 

cumulative value is automatically restricted by a boundary value. Thus, the estimates for the 

prepayment and default values, specified by the affine functions of the state variables, are 

more reasonable than with the model in Liao et al. (2008). In addition, we use a 

time-changed Lévy model to describe the variance of the state variables. Such specification 

can accommodate the general features of the state variables, such as jumps, stochastic 
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volatility, heavy tails, excess kurtosis and skewness.  

Second, because we model the termination hazard rates and the recovery rate to be 

multivariate affine functions of the state variables, these three rates also follow the 

time-changed Lévy processes. The main advantage of such specifications is their capacity to 

generate the various possible features for the termination hazard rates and recovery rate 

curves. Accordingly, our model has more general specifications on the valuation of a 

mortgage than the traditional mortgage model, which uses the specification of affine jump 

diffusion (see Chiang and Tsai, 2012).  

Finally, our study provides a closed-form formula for mortgage valuation based on the 

specifications that the termination hazard rates and the recovery rate follow time-changed 

Lévy processes. This formula can help fixed-income investors effectively manage the 

duration and complexity of mortgage portfolios and quickly determine diversification 

strategies. 

Through the numerical results, we discussed mortgage values under the three popular 

Lévy models: normal, VG and NIG. Our results reveal that the VG model best fits the 

distributions of residuals for the interest rate and the housing return rate. Regarding 

interpretation of the VG model, the drift of the residuals for these two processes of the state 

variables can best be interpreted as Brownian motion, where time is changed by a gamma 

process. Thus, specifying the state variables by following a VG model should be superior to 

the normal process for assessing goodness-of-fit.  

Market participants usually assume that the prepayment rate is a deterministic value 

(e.g., the PSA prepayment model) when valuating mortgage securities. We show that such a 

specification could lead to an incorrect pricing result and then cause a mistake in the 

calculation of the duration. Our numerical results show that if one ignores the influences of 

interest rate on the termination hazard rate, the calculated mortgage value is negatively 
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correlated with the interest rate and the mortgage duration is a positive value. However, if the 

prepayment rate is strongly influenced by the interest rate, as in our numerical example, there 

should be a positive relationship between the mortgage value and the interest rate, and the 

mortgage duration should be a negative value.  

Moreover, our results reveal that the mortgage value calculated using the normal model 

is smaller than that using the VG and NIG models. The normal model may overestimate the 

influence of the interest rate risk on the mortgage value because duration in this model has a 

higher variance than in the other two models. Thus, one could undertake an unsuitable 

hedging strategy when using the normal model. 

We also infer that the VG model is better than the NIG model for valuating a mortgage. 

The first reason is that the VG model is better able to capture the processes of the interest rate 

and the housing return rate. The second reason is that the VG model is better at managing the 

interest rate risk because the variance of the duration is smaller than with the NIG model. 

Thus, we conclude that mortgage valuation using the VG model should be better than with 

using the normal or NIG models. In view of that, the VG model developed in this study more 

reasonably captures the actual situation and thus can improve both the accuracy of mortgage 

valuation and the efficiency of hedge strategy. Our model and findings should help market 

participants accurately value a mortgage and calculate its duration. 
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Figure 1: Share of outstanding for U.S. bond market from 1980-2018 

 
Source:  SIFMA (Securities Industry and Financial Markets Association) Statistics               

http://www.sifma.org/research/statistics.aspx 
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Figure 2: Sensitivity analyses of the influence of the initial values of the interest rate on 
mortgage value and duration when the termination rate and recovery rate 
are constant values  

2a. Mortgage value corresponding to the different initial values of the interest rate 

 

2b. Mortgage duration corresponding to the different initial values of the interest rate 

 
Note: The coefficients of the affine functions are = 0.3812, = 0, = 0, = 0.0424, = 0, = 0, 

= 0.4017, = 0 and = 0. The solid line represents the estimated values under the normal model, the 

dotted represents the estimated values under the VG model and the dashed line represents the estimated values 

under the NIG model. The figures show there is a negative relationship between the mortgage value when the 

initial value of the interest rate the termination rate and recovery rate are assumed to be constant values. 

Moreover, under these specifications, duration is a positive value and is negatively correlated with the initial 

value of the interest rate. 
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Figure 3: Influence of the interest rate on the mortgage value and its duration under the 
three Lévy models 

3a. Mortgage value corresponding to the different initial values of the interest rate 

 
3b. Mortgage duration corresponding to the different initial values of the interest rate 

 
Note: The solid line represents the estimated values under the normal model, the dotted line represents the 

estimated values under the VG model and the dashed line represents the estimated values under the NIG model. 

The basic parameters are ,  and . We let  range from 0.02 to 0.07. The 

coefficients of the affine functions are = 0.3812, = -4.6498, = 0.7846, = 0.0424, = -0.8846, 

= -0.0846, = 0.4017, = 3.7656 and = 1.3112. The parameter values of the three Lévy models for 

the interest rate and the housing return rate can be found in Table 3. Figure 3a shows that there is a positive 

relationship between the mortgage value and the initial value of the interest rate when the coefficient of 

prepayment ( ) is a negative value. Figure 3b shows that duration has a negative value and is negatively 

correlated with the initial value of the interest rate when  is a negative value. When the initial value of the 

interest rate goes up, the values of the mortgage duration estimated by the three Lévy models have a wider 

disparity. In this situation, the mortgage duration estimated by the normal model is much less than for the VG 

and NIG models. 
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Table 1: Summary statistics for the state variables, termination rate and recovery rate 

 
Interest 

Rate 
Housing 

Price Index 
Prepayment 
Probability 

Default 
Probability 

Recovery 
Rate 

Mean 0.0204 176.7300 0.2146 0.0248 0.4845 

Standard 
Deviation 

0.0164 32.1160 0.1295 0.0233 0.1617 

Maximum 0.0502 226.2900 0.6085 0.0774 0.7649 

Median 0.0167 168.7900 0.1628 0.0118 0.5084 

Minimum 0.0003 122.8900 0.0574 0.0031 0.1125 

Sample 
Number 

110 110 110 110 110 

Note: This table shows the means, standard deviations, medians, and maximum and minimum values for 

short-term interest rates, the housing price index, prepayment probabilities, default probabilities and recovery 

rates. Data for the last three variables are based on first-lien, 30-year fixed-rate mortgages taken from the 

CoreLogic LoanPerformance Securities Database. Housing prices were obtained from Standard and Poor’s 

Case-Shiller 10-City Home Price Index. The short-term interest rate is for 3-month U.S. treasury bills. Our 

sample period from September 2001 to October 2010 yielded 110 observations for each variable. 

 

 

Table 2: Estimates of the parameters for the drift term in the processes of the interest 

rate and the housing return rate 

    

Interest rate 
2.9259  -1.8492  -8.8384  

(0.55448) (-0.81911) (1.048) 

Housing return rate 
1.5243 *** -5.1887 * 0.34354*** 

(3.0384) (-1.6641) (7.2316) 
Note: the regression models are shown in Equations (38) and (39). The t-statistics appear in parentheses. , 

 and  for  represent the parameter values in the processes of the interest rate and the housing 

return rate. ***significant at the 1% level. **significant at the 5% level. *significant at the 10% level.  
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Table 3: Estimates for the parameters of the interest rate and the housing return rate in 
the three Lévy models  

Normal model     

Interest rate 
0.0053   5.8391  

(0.1577)    
The housing 0.0071***   7.8589  
return rate (0.0000)    

VG model     

Interest rate 
0.0054*** 257.3063*** 1.8292 *** 8.1119  
(0.0000) (0.0000) (0.0000)  

The housing 0.0074*** 278.5796*** 3.1496  7.8628  
return rate (0.0000) (0.0000) (0.4963)  

NIG model     

Interest rate 
6.3216  37.2515*** -0.8033*** 7.6876  

(0.4449) (0.0000) (0.0000)  
The housing 9.5083  0.9469*** -0.0532*** 5.8972  
return rate (0.4964) (0.0000) (0.0000)  

Note: This table shows the estimates of the parameters for the three types of processes of the interest rate and 

the housing return rate using the maximum empirical likelihood method; “normal model”, “VG model” and 

“NIG model” mean that the Lévy processes are specified as the normal model, variance gamma model, and 

negative inverse Gaussian model, respectively. The definition for each Lévy model can be found in Section 3. 

 is the maximum empirical log-likelihood ratio given estimates . P-values appear in parentheses. 

***significant at the 1% level. **significant at the 5% level. *significant at the 10% level.  

 

Table 4: The calculated mortgage value under three Lévy models  
Lévy 

model 
Survival 

Value 
Prepayment 

Value 
Default 
Value 

Theoretical mortgage 
value 

Normal 31.8618 67.7755 1.5976 101.2349 
VG 30.4477 70.6049 2.3038 103.3564 
NIG 30.7979 70.3599 2.2927 103.4505 

Note: This table shows the mortgage values under the three Lévy models. The basic parameter values adopted 

to operationalize our model are as follows: , ,  and . The coefficients 

of the affine functions are = 0.3812, = -4.6498, = 0.7846, = 0.0424, = -0.8846, = -0.0846, 

= 0.4017, = 3.7656 and = 1.3112. The parameters of each OU-Lévy process for the interest rate and 

the housing return rate can be found in Tables 2 and 3. 
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Appendix A: 

This appendix shows how to obtain the formulas for , , ,  and 

 in Equations (15), (16) and (17). The procedures can also be found in Tsai and 

Chiang (2012). According to Equations (9) and (12), we obtain 

       

 

 

 

.                                (A1) 

Thus, when the MGF of  is expressed as , we have the 

following:  

  

 

 

.                                   (A2) 

This is Equation (15). 

The MGF of  can be shown as follows:  
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.                      (A4) 

Therefore, we can obtain 

     

 

.                             (A5) 

Moreover, we have 

    

.                          (A6) 

Also, we have 
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Thus, we get 
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According to Equations (A3)–(A9), we obtain the following result: 
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where 

 

 

. 

This is Equation (16). 

The MGF of  can be shown as follows:  
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Accordingly, we have 
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We let 
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, and 
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In addition, we have the following results: 
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Thus, we can obtain the following result: 
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Appendix B: 

This appendix shows how to obtain the maximum empirical likelihood (Qin and Lawless, 

1994; Elgin, 2011). We let  ( =  or ),  be the observations of 

the Lévy process. The empirical characteristic function is defined as:  

, where . 

We let  be the theoretical characteristic function, given parameters  (e.g., 

 for the normal process,  for the VG process and 

 for the NIG process). We express 

, 

where  is the real part of  and is the imaginary part of .  

   We then define 

. 

Because , we have 

 . 

Using a grid method, we let  be divided into  points, that is, . 

Because , we have . Accordingly, we have the 

following condition when the estimates are obtained by the empirical and theoretical 

characteristic functions: 
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,                                         (C1) 

where 

 is the probability of ;  

, a vector with  ranks;  

, a vector with 

 ranks; and 

, a vector with  

ranks. 

Thus, using the Lagrange multiplier method, the Lagrange system is expressed as follows: 

, 

, , , 

where  is the empirical log-likelihood ratio function. The former condition is 

expressed as the properties of the probability and the latest condition is given by Equation 

(C1).  

Solving this system (for the details, see Qin and Lawless, 1994 and Elgin, 2011), the 

maximum empirical likelihood estimator is obtained by maximizing 

, 

where , a vector with  ranks, is the Lagrange multiplier and can be solved by 

the following equation: 

0)),((
1

=å
=

n

t
t thp xe

tp )(te

])),(()),(([)),(( ¢= xexexe ththth IR 12 ´k

]),())(cos(),())(cos([)),(( 11 xfexfexe k
R

k
RR mtmmtmth --= !

1´k

]),())(sin(),())(sin([)),(( 11 xfexfexe k
I

k
II mtmmtmth --= ! 1´k

å
=

-=
n

t
tn npl

1

)log()( max x
x

0 .. ³tpts 1
1

=å
=

n

t
tp 0)),((

1
=å

=

n

t
t thp xe

)(xnl

å
=

¢+-=
n

t
n thl

1

))),(()(1log()( xexhx

)(xh 12 ´k



 47 

. 

We then obtain the estimator, expressed as: . 
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Appendix C: 

This appendix shows the moment method for the estimation. For a process  (i.e., 

=  or ), , the sample mean (denoted as ), sample variance 

(denoted as ), and sample skewness (denoted as ) can be expressed as 

, , and . 

We denote the population mean, population variance and population skewness as , 

 and  respectively. In the following, we present ,  and  for each Lévy 

model. For the normal model, we have . For the VG model, the mean, variance and 

skewness can be expressed as  

, , and .  

For the NIG model, the mean, variance and skewness can be expressed as  

, ; and  

. 

Using the sample moment to estimate the parameters, we have =  for the normal 

model. For the VG and NIG models, we use three sample statistic values to obtain the 

model’s parameters. The functions are expressed as follows: 
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Using the above method, we obtain the estimates of the parameters for the interest rate and 

the housing return rate in the Lévy models. Under the normal model, we have = 

7.6684  for the interest rate and = 8.0534  for the housing return rate. Under 

the VG model, we have = 7.6398 , = 136.1238 and = -2.0914  for 

the interest rate; and = 7.3352 , = 157.8497 and = -6.5050  for the 

housing return rate. Under the NIG model, we have = 6.8279 , = 20.4117 

and = -0.8968 for the interest rate; and = 6.5399 , = 19.9852 and = 

-0.1011 for the housing return rate. Then, we use these values as the initial values when 

applying the maximum empirical likelihood method, as shown in Appendix B.  
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